点击:980 发布日期:2025/3/24 11:29:49
为什么量子力学的发展总是伴随着疑惑和争论?这个问题要从量子力学的源头-黑体辐射讲起,这篇文章将会用用最通俗的语言把这个问题剖析清楚,争取让中学生也能听明白。
这篇文章主要讲述几个问题,一,为什么普朗克公式与实验数据符合?二,维恩公式为什么在长波波段低于实验值。
所谓黑体,指的是不反射电磁波的物体,所有射向黑体的电磁波都会先被黑体吸收,其能量再全部以电磁波的形式辐射出来,也就是从它表面出去的光全都是它自身发出来的。这里要补充两点,一,高纯净的玻璃也几乎不反射电磁波,因为光线都透射过去了,所以黑体的概念又补加了一条,既不能反射,也要做到不能透射。二,能量要全部以热辐射的形式散发出去,这里又隐含了一条,不能热传导。黑体的周边应该是真空环境,否则很难杜绝热传导。 早期黑体辐射实验如下图所示。
(左图) Lummer和Pringsheim使用的辐射计。辐射计基于热测量,入射的光被接收的金属片吸收,被加热的金属片的电阻由Wheatstone电桥精确测量。据说其温度分辨达10-7 K {曹:我对此说法存疑}。(右图)Lummer和Kurlbaum 制作的电加热黑体辐射源。
选自中科院物理所研究员曹则贤的文章《黑体辐射公式的多种推导及其在近代物理构建中的意义(一) | 贤说八道》
在黑体这个研究对象确定之后,接下来就是要测量了。单位面积上的黑体表面,比如一平方厘米,其所发出的电磁波是混杂的,可以说包含了电磁波的全部频段,各个频率各个波长的都有。
人们要先将黑体表面发射出来的这些混合光分离开来,分成单色光,再用辐射计去接收单色光,继而测量得到该单色光的辐射功率。分离的原理并不复杂。类似于三棱镜分离。如下图所示。
最后,人们将实验测量的十几个甚至几十个数值用曲线连接起来,就得到了该温度下的辐射曲线。横轴可以用频率表示,也可以用波长表示,两者互为反比,频率大,则波长短。频率小则波长大。纵轴表示单位面积上的某单色光的辐射功率,又称单色辐出度,单位是W/m2。记住是单位是W/m2。
黑体辐射的研究,简单来说就是物体吸收能量后自身发光,发出混色光,人们通过技术手段把这些光筛分成单色光,再分别测量这些单色光的功率,把这些测量值连接起来得到的辐射曲线,就是该温度下物体的辐射规律。事实上,辐射只和温度有关,而和材质无关,300度烧红的木炭和300度烧红的铁球,辐射曲线是一样的,都遵循同样的规律。1896年,德国物理学家维恩先生得到了一个公式,很好的描述了这个规律。下图是该公式。
另外,从这条曲线可以看出,辐射功率随着波长(或者频率)的变化先变大再变小,在中间某个波长值时,辐射曲线会出现一个顶峰,该波长的电磁波辐射能力达到最大值。这个顶峰所对应的波长,被称为λmax,而且物体的温度升高,这个能力巅峰会向着波长变小(频率变高)的方向移动。即横轴为波长的话,顶峰是向左移动的。如下图所示。
至于为什么两边低中间高,为什么最高点会随着温度增加向频率更高的方向移动?真相很简单,后面会一一揭示。这不是问题的关键。至少目前不是。
问题的关键是,随着辐射计的改进,精度的提高,维恩公式在长波区域与实验所测得的数据不符合了。实验值(下图黑点)高于维恩公式的计算值(维恩线),如下图所示。
对于维恩公式,一般这样描述“维恩公式在短波段符合,在长波段不符合”。但从客观来看,将其定性为不符合是夸大其实了,应该是“在长波段与实验值有所偏差”。
实验曲线和维恩曲线这两条曲线在长波段呈现规律性的并行延伸。我并不是在为维恩辩护,这是一个客观事实。
长波电磁波包含红外光、微波、无线电波,是能量较弱的电磁波。 可以通俗理解为极微弱的光。
关于辐射曲线在长波波段不符合这件事,为了便于理解,打一个很浅显的比喻,这就像一个石头被炸碎,飞出去有大石、中石、小石子、粉尘。大中小这些石块很符合之前统计的分布规律,但是对于极微小的粉尘,不符合,实际收集到的粉尘,要比理论计算的粉尘,要多。
实际收集的量,比理论计算的量,要大,而且总是稍大那么一点点。
那么,这个问题如何解决?普朗克教授利用插值法对维恩公式做了稍微的修正,在维恩公式框架不变的情况下,只对维恩公式的分母做了一个小小的改动,将分母-1,减一。如下图所示。上面是维恩公式,下面是普朗克公式
这就导致了当分母比较大时,-1几乎对结果没有影响,而在分母变得很小后,减一将会使得结果明显提高。
举个例子,当分母为一万时,1/10000与1/9999没什么差异,分母较小时,比如1/4变成 1/3,后者有了明显的提高。
这也就导致当频率较高,分母较大时,修正后的数值几乎不变,而频率较低(波长较长)分母较小时,数值明显增大。
最终的结果就是,普朗克曲线与维恩曲线相比,前面的曲线几乎没动,后面的曲线有了显著的抬升。这样,实验值就与理论值(普朗克公式)符合了。
这不是一次伟大的创新,理论的颠覆,这更像是一次微创新,或者一个数学技巧。
这是客观事实,也是一个很简单的数学改变,仔细想想就能想通。
有人说普朗克公式在短波波段和长波波段,公式与实验数据都符合,这是很了不起的。实际上,这并不意外,这是理所当然,因为所谓内插法、插值法,就是拿已经测出的实验结果不断地去尝试,是从结果倒推出了一个公式。这个公式当然会与结果符合。
其实你也可以去试,你要对维恩公式做一次修正,要将分母减去一个数值,但你完全没有眉目,那就把这个数值范围放大一些,比如0-10000,把现有实验数据带进去,结果10000太大,那就减半,试5000,5000还是偏大,那再减半,试2500,这样二分之一递减的话用不了十几次就可以把1试出来。
实际上,-1并不是完全符合的!如上图所示(粉红曲线与黄色圈点并未完全重合)。只是相对于维恩公式来说更符合。这个数值依然有精进的空间,假设这个区间继续缩小,缩小到1.0-1.05之间,再尝试中间值1.025,发现这个数值仍偏大,这样区间就缩小到了1.0-1.025之间,以此类推,再再缩小到1.0125-1.0250间,如果,我是说如果,也用内插法推出一个数值1.0134,比普朗克公式的1更符合,那么能否取代普朗克公式呢?
不能。实验数据与理论公式总有一定的偏差,不能拿前者作为准绳,用来量度公式正确与否。如果把实验数据看做神圣不容置疑的,那就不该有平滑的曲线,又或者各个公式应该根据实验数据做出调整,乘以诸如1.0001之类的修正系数,以做到与实验数据的完全吻合。这是可笑的,是本末倒置。
维恩公式在高频段甚至中频段与实验数据十分契合,这表明这个公式绝非偶然。人们应该去思考,为什么与实验数据符合的很好的维恩公式,到了低频段(长波波段)却与实验值出现了偏差?准确来讲是出现了规律性的少量偏差。人们应该去深入思考去探究原因,而不是减一个修正值了事。
这是轻率的,不负责任的。实际上,普朗克在硬生生凑出这个公式后也陷入了迷惘,因为他要给这个公式、这个-1赋予物理意义,或者说要能从数理上推导出来。这很艰难,甚至他在信中自嘲陷入“绝望”。(如果普朗克将这个数值继续精进,比如1.0082,那才是真正的绝望)
好在,经过长久的努力,分母-1终于有了推导过程,量子力学由此诞生、发展。
准确来讲,量子力学不是起源于瑞利金斯公式,而是起源于维恩公式在长波段出现了偏差。
那么,为什么出现了偏差?人们应该做的是反思,是探究原因,而不是做个-1修正。
其实维恩公式偏差的并不多,并且偏差部分与实验值呈现规律性的并行延伸,下图引自2023年10月23日中科院物理所发表的一篇文章《爱因斯坦对量子假说的初步探索》
说实话,偏差并不大。维恩公式与大部分实验数据相吻合,契合的非常好,这绝非偶然。我个人认为,维恩公式就是黑体的辐射规律,并不需要减一修正。
那么,为什么在长波区域,实验测量值会高于,准确来讲是稍高于维恩公式的理论值?
这是一个极为重要的问题。它关系着近代物理的走向。
原因很简单,因为室温下其他物体也在辐射长波电磁波,而长波电磁波的穿透性很强,可以穿透各种障碍物,难以隔绝。举个简单的例子,就像电影中经常展示的那样,屋里人们散发的红外辐射,隔着厚厚的混凝土墙体依然可以被屋外的红外夜视仪所接收到。
在黑体辐射实验中,照射进辐射计的长波辐射,除了研究对象黑体的,还多了其他各种物体的长波辐射,测得的数据当然会比理论高一点。
这是一个极其简单的道理。这也是整篇文章的核心。
打个比方,还是将石头爆炸,收集到的其他部分都符合理论推算,但是收集到的粉尘却比理论推算的多,那是因为环境中原本就有一些粉尘啊。做不到净空的条件,搜集到的粉尘数值自然比预想的要多一点。
之所以推出黑体,是为了摈弃外来反射这个干扰因素。但是消除掉外界长波辐射这个干扰因素,受限于当时的认知水平,人们没有想到。当时人们对于电磁波的认知,还处于初级阶段,甚至可以说是萌芽阶段。
那么,如何来验证这一点,很简单,重复黑体辐射实验,作对比,前面复刻实验,后面尽可能的屏蔽外界长波辐射(又或者尽可能的降低实验环境温度,比如贴近绝对零度,以减少其他物体的长波辐射),如果后者的曲线与维恩曲线重合,甚至于不需要重合,只要增加屏蔽之后,曲线有明显的向着维恩曲线贴近的趋势,只要能确认这一点,就能验证猜想,就能得到结论,实验曲线之所谓稍高于维恩曲线,是因为外界的长波干扰,长波摄入。
完全屏蔽外界长波辐射,这个实验条件是十分苛刻的。这里有个简单的验证思路,就是同样的实验条件,白天做和深夜做,对比数据。因为白天多了太阳这个6000K的辐射源,它的长波辐射是个明显且巨大的干扰因素。在同样的实验条件下,如果能确认深夜的数值比白天的低,也可以验证这一点。
这是个简陋又简单的验证实验。
如果维恩公式被证实,普朗克公式被证伪,那么能量量子化的理论就要重申审视了。
上一篇:黑体辐射源及黑体辐射原理
联系我们CONTACT US